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Abstract. Charge density can be accessed through
accurate X-ray diffraction by crystals. It has recently
become a rather routine technique. Refinement models
enable a fair description of charge density changes due
to chemical bonding and cohesive forces. Conversely,
momentum density is observable through incoherent
Compton scattering, in particular by use of high-
intensity synchrotron sources. We present results con-
cerning a first attempt at a simultaneous refinement of a
model wavefunction on both diffraction and Compton
data, for MgO and LiH crystals. It is shown that if the
diffraction data are highly sensitive to local effects and
their symmetry around atomic sites, Compton data
are very dependent on the delocalization processes
of electrons. Moreover, Compton measurements show
a systematic deviation from self-consistent-field model
calculations and this is analyzed in terms of an
empirical correlation model for anions in insulators.
Possible future extensions of such studies are finally
discussed.
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1 Some aspects of Bragg scattering and charge
density models

Charge density is an essential function for the under-
standing of chemical bonding. The development of
density functional theory (DFT) led to the possibility
for theoretical prediction of physical and chemical
behavior of many realistic systems [1, 2]. The role of
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charge density is reinforced by the fact that it can be
approached via X-ray Bragg diffraction by crystalline
materials. Specific models exist that allow the electron
density to be recovered from diffraction intensities [1].
Global results of such refinements are generally in
good agreement with both self-consistent-field (SCF)
and DFT calculations. Recent studies have thus been
undertaken concerning complex structures (both miner-
al, such as zeolites, and organic, such as polypeptides)
for which ab initio calculations at a quantitative level are
still questionable [3, 4]. Pioneering experimental work
has also been performed by Presspritch et al. [5] beyond
the ground state in crystals exhibiting metastable excited
states.

However, charge density models used in X-ray dif-
fraction refinements are dictated by the optical nature of
the scattering process. Let us just recall that the observed
intensity is given by

10) x [4©)| (1)

where Q is a reciprocal lattice vector, corresponding to
the change of wave vector due to the scattering process.
The scattering amplitude, 4(Q), is the Fourier transform
(FT) of the thermally averaged charge density (p(¥)).
This effective density results from the averaging over two
sets of variables: fast electronic motion and slow
vibrational motion of nuclear centers. As a consequence,
the optical contrast will be maximized for components of
the density that are localized around atomic centers.
Delocalized components, such as two-center contribu-
tions in a linear combination of atomic orbitals (LCAO)
expansion, lead to a small optical contrast. It is thus a
natural consequence of both vibrational averaging and
the optical nature of scattering to impose a one-center
pseudoatom expansion of the averaged density:

0 = 3 [ 9,7~ R)P(E)E, @
where P(R,) is the probability distribution function for

nuclear position. This expansion leads to the following
expression for the scattering amplitude:
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where f), is the form factor for the pseudoatom p,, W, is
the Debye—Waller factor of the nth atom and R, its
equilibrium position. This model implies the existence of
rigid pseudoatoms, so the density for a given geometry
(denoted by R) is given by

PR =Y 0, ) @

Such a rigid model would, for instance, violate the
Hellman—Feynman theorem and is thus insufficient for
a proper description of crystal dynamics. However, the
pseudoatomic density is expanded in terms of adequate
components, which are determined through a least-
squares minimization procedure of the quantity
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o’ (Qp> being the estimated standard deviation for the

pth observation. In that sense, it means that Eq. (2) or
(4) is the best description of a dynamic density in terms
of rigid pseudoatoms. This may constitute a reasonable
definition of atoms in crystals as seen by a scattering
experiment. However, of course, the relaxation of those
atoms, induced by vibrations, is totally neglected [6].
Response to external forces cannot be understood on the
basis of such a rigid decomposition.

From Eq. (4) it is possible to compare pseudoatoms
for atoms of a given nature in similar environments and
thus to estimate transferability [7]. When considering
Coulombic effects between different molecular units, it
often turns out that the use of transferable pseudoatoms
is satisfactory [8]. This means that the difference between
a density constructed from transferable fragments
(coming from a data bank) and the true density is at
most of the order of 0.05eA™>, which is the usual
experimental limit.

However, when looking at short distance effects, such
as conformational energy changes due to torsional mo-
tions around specific bonds in polypeptides or other
flexible molecules, the role of small distortions of the
charge density from transferability seems essential [9].
In other words, the charge density model implied by
expansions such as Eq. (4) is not sufficient for a full
understanding of bonding and cohesive features in
molecules or solids. One can also say that, owing to the
quasitransferability of the charge density among similar
environments, the energetic behavior depends not only
on the charge density itself, but also on its derivatives,
gradients. This is a further confirmation of the impor-
tance of the pioneering work of Bader [10] relating the
topological features of the charge density to the bonding
and reactivity indices in molecules.

Topological analysis has been extended to experi-
mental densities, based again on Eq. (4), following a first
study on 1-alanine [11]. Such a fitted density does not
fulfill the necessary requirements insuring the validity of
Bader’s original formulation. The fact that fitted topo-
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logical features grossly follow expected trends from
theoretical studies is certainly encouraging, but any
strong conclusions may still be hazardous.

Consider the usual LCAO description of the density:

p = menqsm(?_iém)d)n(?_l_én) (6)

m,n

(several AOs may indeed be centered on the same
nucleus). Chemical bonding is generally described
through two main effects: the shape of effective AOs
and the amount of delocalization between those atoms.
Roughly speaking, analysis of diffraction experiments
provides fairly good information concerning the sym-
metry of important AOs and the effective screening
constants for valence orbitals. However, the two-center
terms in Eq. (6), which have an effect on both electron
delocalization and effective charge transfer, are only
accessed through the sum of their projections over
specific atomic centers. It is thus impossible to distin-
guish between the two mechanisms by an analysis of
only the charge density. Moreover, no rigorous method
exists for thermally averaging two-center terms.

2 Compton scattering and momentum density

Being an incoherent process, Compton scattering got
a revival with the advent of high-intensity synchrotron
radiation. This leads to the observation of directional
Compton profiles (DCPs). If the 3D momentum density
is denoted as n(p), the DCP in the scattering direction
denoted as i is the projection of the 3D density onto the
direction u:

sai)= [ [ [n@ta-padg . (7)

DCPs can be measured in the principal crystallographic
directions [12]. The present resolution is about 0.15 au in
momentum, ¢, and can even be improved in some cases.
Resolution is an essential factor if one wishes to retrieve
chemical information from DCPs, since the contribution
from valence electrons is limited to a few atomic units. A
typical Compton profile is shown in Fig. 1 for MgO [13].

Current practice consists of reconstructing the 3D
momentum density from a finite number of profiles,
by use of a spherical harmonic expansion for n(3).
Numerical reconstruction, initiated by Hansen [14], is
widely used, and is model free. However, we observed
some systematic bias at low and large momentum, owing
to the numerical nature of the method. Thus, we recently
implemented an analytical procedure for reconstruction
of n(p), based on a Gaussian expansion of each
symmetry component [15]. Namely, one assumes the
following separation among momentum transfer and
directional effects,

J(g.@) =" g (q)hiii) , 8)
]

where 7;(ii) is the lattice harmonic of order / and gi(¢) is
expanded as a sum of Gaussian-type orbital derivatives,
in such a way that the reconstructed momentum density
is expressed by a simple Gaussian contraction.
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Fig. 1. Inelastic scattering spectrum in the limit of large momen-
tum transfer. The scattering vector is aligned with the (100)
direction. The Compton profile is the broad peak centered about
the 0 au position. The elastic contribution is the narrow peak at
=7.9 au

Tests based on ab initio calculations show the
good reproducibility of our method at large momen-
tum: for instance, kinetic energy can be adequately
predicted from reconstructed density. Indeed, there is
no unique way to predict a 3D function from a finite
set of 1D projections: as a consequence, the 3D
momentum density is not directly accessible from an
experiment.

Let us recall that momentum density is the FT of the
so-called autocorrelation function of the first-order
density matrix:

n(p) = / B(7)ePdr | (9)

where

B(7) :/F1(7+?,7)d? , (10)

and I is the first-order density matrix.
In terms of the natural expansion of the density
matrix:

BE) = n [ Ui+ (1

Owing to obvious mathematical properties, a given DCP
is just the 1D FT of the autocorrelation function along
the direction #:

+00

B(tii) = (1) / J(g,i)e"dq . (12)
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Therefore, momentum density conveys some informa-
tion about the phase variation of the wavefunction. For
comparison, we recall also that the Bragg diffracted
intensity is the FT of the autocorrelation function of the
charge density, the so-called Patterson function. From
Egs. (1) and (2):

1(0) = / P()e0d7 .

P(?) :/p(7+7)p(?)d7 . (13)

Any information about the phase of the wavefunction is
thus lost in a diffraction experiment.

In a crystal, we have shown the following property
[16] for a filled band system. Let P, » be the usual
population matrix element relating two orbitals, where

(nL) refers to the AO of type n in unit cell Z. In a band

structure formulation, if k denotes a wave vector in the
Brillouin zone (BZ), the relevant population matrix for
wave vector k is written as

mn( ) ZPmOnLel?Z ) (14)

this population matrix being periodic in the reciprocal
space: P, (k + Q) =P, (k) Then, one obtains for the
3D momentum density:

:anzn(ﬁ)amn@) (15)

G (B) = 133(B) 1a(B)e P . (16)

Ay s simply the distance between two atomic centers
within the unit cell. In this picture, p is identified with
the wave vector of the electron within the band.
Equation (16) shows a very direct connection between
momentum density and the structure of the one-particle
density matrix. Extension to nonfilled bands is easy,
through the introduction of an occupation function
within the BZ.

Structural effects only appear via the phase term
involving interatomic vectors in Eq. (16). As a conse-
quence, Compton experiments are not sensitive to lat-
tice modes of vibration. The small effect of optic modes
has not yet been quantitatively identified. At present,
the Compton experiment is considered as vibration
free.

For comparison, the equivalent expression for the
diffraction amplitude would be

Q)= S (@ (@] [ (Bl

BZ
x ¢ i(FtO)Ry )(n(k)e”?ﬁ" , (17)

which implies an integration over the whole BZ, leading
to a rather indirect connection with the band structure
mechanism.

Thus, the collective behavior of electrons in ex-
tended solids seems to be more directly observable
from an analysis of momentum density than from a
diffraction experiment. A contrario, from Eq. (16), we
observe that all one-center contributions are superim-
posed in the expression of momentum density, leading
to the impossibility for any structural differentiation.
To our understanding, this is the origin of the com-
plementarity between the two investigations on a given
compound.



3 First refinement in momentum space: LiH

We performed the first extensive refinement on Compton
profiles for LiH [16]. From Eq. (16) it occurs that an
explicit model for the population matrix is necessary at
each wave vector in the BZ.

Measurements can only be performed for electron
momentum less than a few atomic units: only core
electrons contribute to large momentum transfer. As
a consequence, one must assume a total separability
between core and valence densmes Core density is
calculated from free atoms (Li 1s® in the present case).
One defines the valence density as

ny(P) = n(p) = neore(p) - (18)

Owing to the strong ionic character of this compound,
we built the valence electron wavefunctions as follows.
We consider a cluster centered on the anion, and
surrounded by six first-neighbor cations and write the
wavefunction for this cluster as

(19)
The Li orbitals are 2s type (adjunction of hybridization
appeared to be insignificant). We then construct Bloch
orbitals as

b(E7) = NS()Dr— L

S(k) =" (6o (7 -

with full account for overlap between very diffuse anion
orbitals. This model wavefunction is approximate, but
should reveal the mechanism for incomplete charge
transfer. AOs are approximated by Slater-type orbitals
(STOs), so the adjustable parameters are the effective
screening constants of H and Li on the one hand and
the A coupling coefficient on the other hand. The 3D
momentum density was reconstructed numerically from
12 DCPs, and a least-squares refinement was performed
on ny(p), taking estimated errors into account. Notice
that the case 4 = 0 corresponds to the fully ionic model
for the crystal. The relevance of the refinement proce-
dure is mostly revealed on comparison between fitted
and observed DCPs. It turns out that the most sensitive
functions are the so-called Compton anisotropies,
defined as the difference between DCPs in two different
directions. (Ji90 — J110) 1s shown in Fig. 2: it shows the
difference of behavior of electrons among the two basic
crystallographic directions of Li-H and H-H first
contacts. We observe that a three-parameter fit is as
good as a full ab initio CRYSTALYS calculation [17].
The fitted parameters are (g = 0.74(1), {1; = 0.59(1),
A= —0.3202).

The effective screening constants are in close agree-
ment with predicted values from quantum screening
rules. The effective covalency of the bonds is about 10%.

¢(7)_N{€0H(7) \/TLILI{ZQDL]

Z) >ei/?.Z , (2())
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Fig. 2. Compton relative anisotropy defined as the difference
between directional Compton profiles in the (100) and the (110)
directions. Experiments: solid line. Refined model with 10%
effective covalency: dotted line. Refined model without covalency:
dashed line

We also display the anisotropy from a refinement where
the crystal is assumed to be purely ionic (4 = 0). The
discrepancy is striking, both for the magnitude and
the phase of the anisotropy.

This analysis clearly shows that anisotropic features
in momentum space are highly sensitive to the inter-
atomic coupling of valence wavefunctions.

4 MgO: a combined study in real and momentum space

Structure factors of MgO have been continuously
measured. In particular, a recent experiment was
performed using convergent beam electron diffraction
[18] in order to measure accurate values for the low-
angle structure factors, which are the most sensitive to
cohesive forces; the 11m1t in sin 0/ for those measure-
ments is 0.5 A~! Higher scattering angle data, mostly
insensitive to Valence electrons, but essential for the
estimate of Debye—Waller factors, are taken from
Ref [19]. Owing to some ambiguities in the discussion,
the analysis was reconsidered by Gillet and Cortona [20].
As usual, the one-center expansion is assumed to be

F(hkl) = 4[f+ W+ (—1)"H W,} . (21)

Besides the usual type of pseudoatom description
(including rescaling of effective valence densities, adjust-
able charge transfer), the following decomposition is
proposed for cation and anion form factors:

Fo = fag Q) + 55 furgan(©)

f-=fo-(Q) + (g — 2)3/(Q) + p(Q)K4(0) . (22)

A DFT calculation on the solid was performed by the
method proposed by Cortona [21], in which the density
is constrained to be the sum of ionic components of
spherical symmetry. This method provides optimal ionic
densities, or conversely ionic form factors fy.e+, [

notice that this method leads to accurate cohesive
energies, lattice parameters and bulk moduli in various
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Fig. 3. Reconstructed electron momentum density using the
analytical method

series of ionic solids. One unique advantage of this
method is the possibility to define anionic density. In
order to improve the fit to observed structure factors,
additive contributions are added. First, the charge
transfer is assumed to be incomplete, which leads to
a partial occupation of the 3s state for the cation.
Conversely, the modification in the anion is modeled by
a Slater-type function, the FT of which is éf. Finally,
a nonspherical contribution for the anion is included,
limited to the first fourth-order cubic harmonic compo-
nent (also represented by a STO). Such a simple model,
with only five parameters, leads to a fair agreement with
experimental structure factors. The nonspherical com-
ponent has a very small effect on the structure factors,
though it significantly affects the global reliability of the
fit. ¢, the effective charge of the anion, is between 1.8 and
2 for various refinements. The analysis leads to a fair and
stable description of the effect of crystal forces on the
effective oxygen density. Nevertheless, it turns out to be
impossible to decide among several fits, which all lead to
a prediction of structure factors better than 1%. As a
conclusion, it turns out that even precise knowledge of
the charge density is not sufficient for understanding the
nature of interactions in a crystal such as MgO.

Parallel to this study, we performed a precise
measurement of DCPs at the European Synchrotron
Research Facility (D15B), along eight different crystal-
lographic directions [13, 22]. The 3D momentum density
was reconstructed through our analytical procedure, as
described previously. The necessary strategy for refine-
ment is more complex than for LiH, since four valence
bands are populated in this crystal. We kept the idea of
representing the solid as a periodic array of {O,6Mg}
clusters, each cluster containing eight valence electrons.
The four wavefunctions of the cluster are:

3

=370

¢)Pj = Np |:([)p]_,o + ipN’i ((/)A/;,Mg - (p;]j\/lg):|7 ] =X,z (23>

where ‘Pf{v[g stands for the s-type orbital of the Mg atom
centered at £4¢é;. The function centered on the oxygen
(taken at the origin) can be s or p type. Four Bloch
functions can be defined from Eq. (23), according to the
procedure of Eq. (19). If we call n;(p) the FT of each of
the four cluster wavefunctions, the valence momentum
density is written as

4

ny(p) = Z 271@)0"7? (ﬁ)m(ﬁ) ) (24)
ij=1

where ~!(p) is the inverse overlap matrix among the

four Bloch functions.

Owing to an expected weak covalency together with a
great similarity of Debye—Waller factors for the two ions
[18], the following expression for the structure factors
could be used:

Fnkt) = 4{ o+ (=)} (25)
fi = fug-(0)
- 2
o= fors(O) + [ | [e@7d7 + ¢, | €97dF .
0.15(0) /\|e ”]Z;/‘p/e r
(26)

The model given by Eq. (23) uses ionic type functions
from the previously cited work on MgO [20]. The refined
parameters include scaling and mixing factors [13, 23]
and result from a joint refinement of low-order structure
factors and the three main DCPs are summarized
in Figs. 4 and 5. They show, for the first time, the

q(a.u)

Fig. 4. Comparison of absolute anisotropies for chemically im-
portant directions. European Synchrotron Research Facility
measurements: dots. Ionic model (Rj = 1.6%): dashed line. Results
from joint refinement (A, = 107% 2, = 107'; R; = 1.3%): solid line
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Fig. 5. Comparison of Af defined by Af(h,k, l):(—l)hH‘H
[F(h, kD) = dfgges (k1) — (— 1) afo (h k, 1)] /4.

ment [18]: stars. Tonic model resulting from density functional
theory (Rg = 0.74%): squares. Results from the joint refinement
(K025 = 0.998; K02, = 1.028; Kmg 3, = 15 Rp = 0.35%): diamonds

Measure-

possibility to refine valence wavefunctions from
combined structure factors and DCPs, and the decou-
pling between local and delocalized effects in electron
behavior.

5 Correlation in ionic crystals?

As discussed earlier, subtleties of chemical bonding are
mostly revealed via the anisotropy of the momentum
density. One advantage related to that observation is the
fact that most inadequacies in the measurement process
will cancel out when considering those anisotropies of
Compton profiles: as a consequence, even small fluctu-
ations of that sort become highly significant.

Let us nevertheless consider in more detail the com-
parison between the experimental and the theoretical
isotropic part of the total DCPs. Both for LiH and
MgO, we observe a systematic difference between
experimental and CRYSTAL95 Hartree—Fock (HF)
SCF profiles, which is similar for all directions, and can
therefore be considered as isotropic in nature [I3].
The average difference is shown for both compounds
in Figs. 6 and 7 (dotted lines); it is defined as
AJexp(q) = (Jexp(q)) — (Jur(g)), where the directional
average is taken from principal directional profiles,
together with uncertainties. For LiH, the experimental
profile is lower than the HF profile at low momentum
and higher in the case of MgO. In other words, valence
electrons seem to be more localized than predicted at the
HF level for LiH and are more delocalized for MgO.

We first thought that this discrepancy was related to
systematic errors in the measurements. For MgO, by
analyzing previous measurements by Aikala et al. [24], we
found a similar difference. Changing the basis set for both
LiH and MgO led to unaltered conclusions. It is thus not
unreasonable to quote some physical reasons for those
systematic differences. Therefore, we consider the possi-
bility for electron correlation effects to be significant in
those compounds, and more interesting to be observable
through a quantitative analysis of momentum density.
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Fig. 6. Refinement of isotropic difference between experimental
and Hartree-Fock (HF) Compton profile of LiH. Experiment:
dotted line with error bars. Model: full line
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Fig. 7. Refinement of isotropic difference between experimental
and HF Compton profile of MgO. Experiment: dotted line with
error bars. Model: full line

Correlation effects should be significant for valence
electrons in anions that are confined to a finite region of
space, as compared with free ions. We have undertaken
a full analysis of this effect by calculating correlated
wavefunctions for clusters that mimic the crystal
behavior. Meanwhile, we want to propose a simple
empirical mechanism to account for correlation.

First consider LiH, and more specifically the pair of
valence electrons around the hydrogen ion. The corre-
lation mechanism can result in a double effect. The re-
pulsion between the two electrons will expel one electron
further from the nucleus, and as a result the other will
feel a reduced screening compared with the uncorrelated
situation. Therefore, starting from a doubly occupied
STO,

Vo(1,2) — NeL+m) 7 (27)

we propose the following approximation for the corre-
lated pair:

w(hz) _ Nl(efome*ﬂpg + efwze*ﬂrl)(l + 1771]7‘2) . (28)

The angular correlation is accounted for by the term
n 71 .72, though radial correlation occurs via the unbal-
ance of the effective nuclear charges for the two
electrons. This simple model allows separate study of
both radial and angular correlation. This was further
validated by a variational calculation on two electron
ions, and led to results that are in fair agreement with
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ab initio calculations (the correlation energy obtained
for the free hydrogen ions is about 65% of the exact
one). The model difference Compton profiles AJ(g) =
J(g) — Jo(g) were derived from Egs. (26), (27) and (28)
and then refined with respect to experimental isotropic
difference  AJexp(q) = (Jexp(9)) — (Jur(g)). The con-
straint { :%(OH—/?) was applied. The result of the

refinement is shown in Fig. 6 (full line). The refined
parameters are o = 1.46 (£0.06) and f = 1.64 (£0.06).
n turned out to be insignificant and was set to 0. Jexp(g) 1S
shifted towards momenta comparable to those of core
electrons of lithium. This shows that, for a further
analysis, the environment of the anion is to be consid-
ered explicitly, in the same way as discussed in Sect. 4.
The extension of such clusters to incorporate correlation
effects is under study. The agreement between the
experimental difference and our model is very satisfac-
tory, but led to an overestimate of the kinetic energy;
AKEc, = KEc, — KEyp being estimated from AJ(g).

For the oxygen ion in MgQO, the problem is more
complex since we must at least consider eight electrons,
and thus four pairs undergoing exchange. Nevertheless,
if we consider an average effect for each pair (the four
being equivalent), it is still possible to write the effective
pair wavefunctions as

Yo(1,2) = Nryre t0ntn) (29)

w(1,2) = N/rlrz(e—zrle—ﬁrz + e—arze—ﬂrl)(l + ncos 012) .
(30)

The refinement of AJ(q) = J(q) — Jo(q), derived from
such functions is shown in Fig. 7 (full line).

The parameters obtained are o =4.15(£0.12),
p=2.78 (£0.12) and n= -1.53 (£0.23). Angular cor-
relation is significant in that case. For ions described by
s-type orbitals, 5 is generally quite smaller (around —0.1)
and a proper interpretation should include 2p orbitals
explicitly. The mutual screening of electrons appears to
be more pronounced than in the LiH case but is partially
compensated by the angular term, so the resulting effect
for MgO is proportionally smaller in magnitude than for
LiH. We further observe that AJ.,(¢) is positive at both
low and high momenta; this phenomenon is also to be
observed for effective ions, when comparing correlated
and uncorrelated profiles. The effect of correlation on
kinetic energy, estimated from this simple model, turns
out to be adequate in this case of MgO.

Subsequently, correlation effects for valence electrons
might be understood as being mainly intraanionic in
the case of MgO, whereas they lead to a slight charge
transfer from H™ to Li" in the former case.

6 Conclusion

Even though our model is too crude, it is plausible that
accurate measurements of Compton profiles, analyzed
through a wavefunction refinement, together with anal-
ysis of structure factors, may lead to very fruitful
information concerning chemical bonding.

1. Structure factors are highly sensitive to the shape and
nature of important AO contributions to form the
solid.

2. Compton profiles can lead to a nice description of the
coupling among adjacent atoms.

3. Finally, after a precise refinement in both spaces,
remaining discrepancies can be analyzed in terms of
possible mechanisms for correlation effects in ions or
solids.

We feel that extending such types of analysis to more
covalent or metallic solids might be helpful for a better
management of cohesive forces: another interesting
situation being that of molecular solids where Compton
scattering could lead to an improved understanding of
intermolecular forces [25], such as for hydrogen bond-
ing, where a recent experiment [26] on ice led to much
controversy [27]. The experimental anisotropy of the
Compton profiles was interpreted as the signature of
a hydrogen-bond effect [25]. This conclusion was then
contradicted by a theoretical study on a dimer of
noninteracting water molecules, where just Pauli repul-
sion was incorporated [27] and the authors obtained
qualitatively similar features to the experimental obser-
vation and concluded that this experiment could not
provide evidence for cohesive forces in ice. We believe
that the conclusions cannot be so drastic. First of all,
Pauli repulsion is part of cohesive interaction, and
another model, which incorporates both repulsive and
attractive contributions (we have undertaken such a
study), has to be used. Coming back to the effect of
repulsion between closed shells, let us end with a very
simple model. Assume two doubly occupied_equivalent
orbitals, ¢, ¢,, whose centers are distant by R. The one-
particle density matrix is written as

17.7) = gy 0 ()60 7) + a7
S04 (P97 — S8 ()] G1)

The effect on the charge density is of second order in
overlap,

2

PO =15 [0*(P) + * (7 — B) — 2S¢(Pp(F - R)] ,
(32)
though it is of first order for momentum density:
. 42(3 3
P =15 1‘_(?2) (1 - Se“) . (33)

Therefore, the momentum density is, in principle, more
adapted to intermolecular effects than charge density.
The controversy about ice needs further discussion.
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